STAT 510: Homework 10

David Dalpiaz

Due: Monday, April 26, 11:59 PM

Exercise 1 (Normal Means MLE)

Consider $X_1, \ldots, X_k \sim N(\theta_i, \sigma_i^2)$. That is, each observation is drawn independently from a normal distribution with potentially different means and variances. Assume the variances are known.

Define $\theta = (\theta_1, \ldots, \theta_k)$.

- Find the MLE for θ , $\hat{\theta}$.
- Find $\mathbb{E}\left[\hat{\theta}\right]$
- Find $\mathbb{V}\begin{bmatrix} \hat{\theta} \\ \hat{\theta} \end{bmatrix}$. Also note what this result simplifies to when $\sigma_1 = \ldots = \sigma_k = 1$.

Exercise 2 (Estimating a Variance with One Observation)

Consider a single observation, $X \sim N(0, \sigma^2)$.

- Find an unbiased estimator of σ^2 .
- Find the MLE of σ .

Exercise 3 (Inverse Guassian MLE)

Let X_1, \ldots, X_n be a random sample from the inverse Gaussian distribution

$$f(x;\mu,\lambda) = \left(\frac{\lambda}{2\pi x^3}\right)^{\frac{1}{2}} \exp\left(-\frac{\lambda(x-\mu)^2}{2\mu^2 x}\right), \quad x > 0.$$

Find the MLE of μ and λ .

Exercise 4 (A Regression MLE)

Consider Y_1, \ldots, Y_n such that

$$Y_i = \beta x_i + \epsilon_i$$

where

- the x_i are fixed, known constants
- $\epsilon_i \sim N(0, \sigma^2)$
- σ^2 is unknown.

Find the MLE of β as well as its mean and variance.

Exercise 5 (Beta-Geometric Model)

Assume:

- Likelihood: $X_1, \ldots, X_n \sim \text{Geometric}(p)$
- Prior: $p \sim \text{Beta}(\alpha, \beta)$

Find the posterior mean of $p \mid X_1, \ldots, X_n$, that is, the Bayes estimator of p under squared error loss.

Exercise 6 (A Simple LRT)

Suppose $X_1, \ldots, X_n \sim N(\mu, \sigma^2 = 2)$. Derive the likelihood ratio test for

$$H_0: \mu = 10$$
 versus $H_1: \mu \neq 10$.

Use the data stored below in norm data to carry out the test by calculating an approximate p-value using the large sample properties of the likelihood ratio test statistic.

set.seed(42) $norm_data = rnorm(n = 100, mean = 10.4, sd = sqrt(2))$

Exercise 7 (A LRT for Two Proportions)

Suppose $X_1, \ldots, X_{n_x} \sim \text{Bernoulli}(p_x)$ and $Y_1, \ldots, Y_{n_y} \sim \text{Bernoulli}(p_y)$. Derive the likelihood ratio test for

$$H_0: p_x = p_y$$
 versus $H_1: p_x \neq p_y$.

Assuming $n_x = 20$, $n_y = 30$, and $p_x = p_y = 0.3$, repeatedly simulate from this setup and for each simulation:

- Calculate the likelihood ratio test statistic.
- Calculate the value of the usual "textbook" test statistic where \hat{p} is the pooled estimate of the proportion.

$$z = \frac{\hat{p}_x - \hat{p}_y}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_x} + \frac{1}{n_y}\right)}}$$

Using the results of these simulations:

- Plot a histogram of the calculated likelihood ratio test statistics and overlay the approximate distribution of the test statistic under the null hypothesis.
- Create a scatter plot of the likelihood ratio versus the textbook test statistics. What do you notice?

Exercise 8 (An ANOVA Adjacent LRT)

Suppose

 $\begin{array}{l} \bullet \quad X_1, \dots, X_{n_x} \sim N(\mu_x, \sigma_x^2). \\ \bullet \quad Y_1, \dots, Y_{n_y} \sim N(\mu_y, \sigma_y^2). \\ \bullet \quad Z_1, \dots, Z_{n_z} \sim N(\mu_z, \sigma_z^2). \end{array}$

Derive the likelihood ratio test for $H_0: \sigma_x^2 = \sigma_y^2 = \sigma_z^2$ versus an alternative that allows for at least one unequal variance.

Use the data stored below in the vectors \mathbf{x} , \mathbf{y} , and \mathbf{z} to carry out the test by calculating an approximate p-value using the large sample properties of the likelihood ratio test statistic. (Note that this data is **not** tidy, but is instead stored in a format that is easy to understand.) Does the result match your expectation?

```
set.seed(42)
x = rnorm(n = 50, mean = -5, sd = 1)
y = rnorm(n = 60, mean = 0, sd = 1)
z = rnorm(n = 70, mean = 5, sd = 1)
```

Exercise 9 (Free Points)

It's been a long semester! Draw a smiley face for a free point!

Exercise 10 (Free Points)

It's been a long semester! Draw a smiley face for a free point!

Exercise 11 (Free Points)

It's been a long semester! Draw a smiley face for a free point!